Number
Theory
(Part - 2) Johnson

Number Theory
 (Part - 2)

P. Sam Johnson

NITK, Surathkal

Overview

Number
Theory (Part - 2)

We discuss the following in two lectures:

- the prime factorization factorials
- applications of integers which are relatively prime (the integers have no prime factors in common)
- Stem-Brocot tree: a mehod to construct the set of all nonnegative fractions m / n with $\operatorname{gcd}(m, n)=1$
■ invertible element in the set of integers modulo m (denoted by \mathcal{Z} and a characterization for existence of inverse in \mathcal{Z}
- Solving the congruence relation $a x \equiv 1(\bmod m)$
- properties of $\phi(n)$, Euler's totient function of n, the number of integers (between 1 and n) which are relatively prime to n
- Chinese remainder theorem to solve a system of linear congruence relations.

Number
Theory

We now look at the prime factorization of some interesting highly composite numbers, the factorials:

$$
n!=1.2 \ldots \ldots n=\prod_{k=1}^{n} k, \quad \text { integer } n \geq 0
$$

We define 0 ! is 1 for our convention for an empty product.
For every positive integer n,

$$
n!=(n-1)!n .
$$

And it is the number of permutations (bijective functions from $\{1,2, \ldots, n\}$ to itseft) of n distinct objects. That is, $n!$ is the number of ways to arrange n things in a row.

We shall prove that $n!$ is plenty big and the factorial function grows exponentially.

Number
Theory
(Part - 2)
P. Sam
$n!^{2}=(1.2 \ldots \ldots n)(n \ldots .2 .1)=\prod_{k=1}^{n} k(n+1-k)$. We have

$$
\begin{equation*}
n \leq k(n+1-k) \leq\left(\frac{n+1}{2}\right)^{2} \tag{1}
\end{equation*}
$$

because the quadratic polynomial $k(n+1-k)$ has its smallest value at $k=1$ and its largest value at $k=\frac{n+1}{2}$.

Apply $\prod_{k=1}^{n}$ in (1), we get

$$
\prod_{k=1}^{n} n \leq \prod_{k=1}^{n} k(n+1-k) \leq \prod_{k=1}^{n}\left(\frac{n+1}{2}\right)^{2}
$$

That is,

$$
n^{n / 2} \leq n!\left(\frac{n+1}{2}\right)^{n}
$$

Let p be a prime number. We would like to

 determine the largest power of p that divides n !Number Theory (Part - 2)

That is, in $n!$'s unique prime factorization, we want the exponent of p in n !

We denote this number by $\varepsilon_{p}(n!)$.

Example

Let $p=2$ and $n=10$. Then $\varepsilon_{2}(10!)$ can be found by summing the numbers that contribute all possible powers of 2 .

We mean "an integer m_{1} " contributes a power of $2\left(s a y, 2^{\ell}\right)$ if there are m_{1} integers (between 1 and 10) which are divisible by 2^{ℓ}.

Since $n=10$, starting from 1 to 10 , possible powers of 2 are $2,2^{2}$ and 2^{3}.

Calculation of $\varepsilon_{p}(n!)$

Let a and b be positive integers. Then $\lfloor a / b\rfloor$ helps us to know the number of integers (between 1 and a) which are divisible by b.

	1	2	3	4	5	6	7	8	9	10	powers of 2
divisible by 2		$*$		$*$		$*$		$*$		$*$	$5=\lfloor 10 / 2\rfloor$
divisible by 4				$*$				$*$			$2=\lfloor 10 / 4\rfloor$
divisible by 8								$*$			$1=\lfloor 10 / 8\rfloor$
	0	1	0	2	0	1	0	3	0	1	8

That is, the middle of the last row says that the number of appearences of 2 for any integer k between 1 and 10 . This is denoted by $\rho(k)$ (called, the ruler function). For example, $\rho(1)=0, \rho(4)=2, \rho(10)=1$,
Hence 2^{8} divides 10 ! but 2^{9} does not. Note that

$$
\varepsilon_{2}(10!)=\lfloor 10 / 2\rfloor+\lfloor 10 / 4\rfloor+\lfloor 10 / 8\rfloor=5+2+1=8
$$

Number
Theory (Part - 2)

For general n, this method gives

$$
\varepsilon_{2}(n!)=\lfloor n / 2\rfloor+\left\lfloor n / 2^{2}\right\rfloor+\left\lfloor n / 2^{3}\right\rfloor+\cdots=\sum_{k \geq 1}\left\lfloor n / 2^{k}\right\rfloor .
$$

This summand is actually finite, since the summand is zero when $2^{k}>n$.

Each term is just the floor of half the previous term. This is true for all n because $\left\lfloor\frac{n}{2^{k+1}}\right\rfloor=\left\lfloor\left\lfloor\frac{n}{2^{k}}\right\rfloor / 2\right\rfloor$.

Exercise

Prove that $\sum_{k \geq 1}\left\lfloor\frac{n}{2^{k}}\right\rfloor$ has only $\lfloor\log n\rfloor$ non-zero terms.

Number
Theory

When we write the number n in binary representation, we can find easily $\varepsilon_{p}(n!)$.

For example, $n=100, p=2$. Then $n=(1100100)_{2}$.

$$
\begin{aligned}
\lfloor 100 / 2\rfloor & =(110010)_{2}=50 \\
\lfloor 100 / 4\rfloor & =(11001)_{2}=25 \\
\lfloor 100 / 8\rfloor & =(1100)_{2}=12 \\
\lfloor 100 / 16\rfloor & =(110)_{2}=6 \\
\lfloor 100 / 32\rfloor & =(11)_{2}=3 \\
\lfloor 100 / 64\rfloor & =(1)_{2}=1
\end{aligned}
$$

Therefore $\varepsilon_{2}(100!)=50+25+12+6+3+1=97$.

We have $n=100$. Then $n=(1100100)_{2}$.

Number
Theory (Part - 2)

Each 1 contributing 2^{m} to the value of n contributes

$$
2^{m-1}+2^{m-2}+\cdots+2^{0}=2^{m}-1
$$

to the value of $\varepsilon_{2}(n!)$.
For example, the first 1 in 100 (coefficients of 2^{2}) contributes $2+1=2^{2}-1$.

The second 1 in 100 (coefficients of 2^{5}) contributes $2^{4}+2^{3}+2^{2}+2+1=2^{5}-1$.

The last 1 in 100 (coefficients of 2^{6}) contributes $2^{5}+2^{4}+2^{3}+2^{2}+2+1=2^{6}-1$.

Therefore
$\varepsilon_{2}(n!)=\left(2^{2}-1\right)+\left(2^{5}-1\right)+\left(2^{6}-1\right)=3+31+63+97$.

Finding $\varepsilon_{p}(n!)$ for an arbitrary prime p

The binary representation shows us how to derive another formula

$$
\varepsilon_{p}(n!)=n-v_{2}(n)
$$

where $v_{2}(n)$ is the number of 1 's in the binary representation of n.

This simplification works because each 1 that contributes 2^{m} to the value of n contributes $2^{m-1}+2^{m-2}+\cdots+2^{0}=2^{m}-1$ to the value of $\varepsilon_{2}(n!)$.

The following is a generalization of our findings to an arbitrary prime p.

Exercise

Prove that $\varepsilon_{p}(n!)=\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor+\cdots=\sum_{k \geq 1}\left\lfloor\frac{n}{p^{k}}\right\rfloor$ where p is a prime number.

Relatively Prime

Number
Theory (Part - 2)

When $\operatorname{gcd}(m, n)=1$, the integers m and n have no prime factors in common and we say that they are relatively prime.

- A fraction m / n is in lowest terms iff $\operatorname{gcd}(m, n)=1$.
- Since we reduce fractions of lowest terms by casting out the largest common factor of numerator and denominator, we get $m / \operatorname{gcd}(m, n)$ and $n / \operatorname{gcd}(m, n)$ are relatively prime. Hence

$$
\operatorname{gcd}(k m, k n)=k \operatorname{gcd}(m, n) .
$$

- When we use the prime exponent representations of numbers, we have
- $\operatorname{gcd}(m, n)=1 \Longleftrightarrow \min \left\{m_{p}, n_{p}\right\}=0$ for all p.
- $\operatorname{gcd}(m, n)=1 \Longleftrightarrow m_{p} n_{p}=0$ for all p.

Number
Theory (Part - 2)

$$
k_{p} m_{p}=0 \text { and } k_{p} n_{p}=0 \Longleftrightarrow k_{p}\left(m_{p}+n_{p}\right)=0
$$

when m_{p} and n_{p} are non-negative.

Beautiful way to construct the set of all nonnegative fractions : Stem-Brocot tree

Number Theory (Part - 2)

There is a beautiful way to construct the set of all nonnegative fractions m / n with $\operatorname{gcd}(m, n)=1$, called the Stem-Brocot tree because it was discovered independently by Moris Stern, a German mathematician, and Achille Brocot, a French clockmaker.

The idea is to start with the two fractions $\left(\frac{0}{1}, \frac{1}{0}\right)$ and then to repeat the following operation as many times as desired: Insert $\frac{m+m^{\prime}}{n+n^{\prime}}$ between two adjacent fractions $\frac{m}{n}$ and $\frac{m^{\prime}}{n^{\prime}}$.

The new fraction $\frac{\left(m+m^{\prime}\right)}{\left(n+n^{\prime}\right)}$ is called the mediant of $\frac{m}{n}$ and $\frac{m^{\prime}}{n^{\prime}}$.
Note that the fraction $\frac{1}{0}$ represents a very big integer.

Number
Theory

For example, the first step gives us one new entry between $\frac{0}{1}$ and $\frac{1}{0}$,

$$
\frac{0}{1}, \frac{1}{1}, \frac{1}{0} ;
$$

and the next gives two more ;

$$
\frac{0}{1}, \frac{1}{2}, \frac{1}{1}, \frac{2}{1}, \frac{1}{0} .
$$

The next gives four more,

$$
\frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1}, \frac{3}{2}, \frac{2}{1}, \frac{3}{1}, \frac{1}{0} ;
$$

and then we will get 8,16 , and so on.

Number
Theory (Part - 2)
P. Sam Johnson

NIT

The entire array can be regarded as an infinite binary tree structure whose top levels look like this:

Each fraction is $\frac{m+m^{\prime}}{n+n^{\prime}}$, where $\frac{m}{n}$ is the nearest ancestor above to the left, and $\frac{m^{\prime}}{n^{\prime}}$ is the nearest ancestor above and to the right. An "ancestor" is a fraction that is reachable by following the braches upward.

'MOD' : The congruence relation

Number
Theory

Modular arithmetic is one of the main tools provided by number theory.

The definition $a \equiv b(\bmod m)$ (can be read " a is congruent to b modulo $\left.m^{\prime \prime}\right) \Longleftrightarrow a-b$ is a multiple of m, makes sense when a, b and m are arbitrary real numbers, but we use the definition with integers only.

Exercise

$a \equiv b(\bmod m) \Longleftrightarrow a \bmod m=b \bmod m$.

For example, $9 \equiv-16(\bmod 5)$,
because $9(\bmod 5)=4=(-16)(\bmod 5)$.

Number
Theory (Part - 2)
P. Sam Johnson

The congruence sign " \equiv " looks conveniently like ' $=$ ', because congruences are almost like equations.

For example, congruence is an equivalence relation ; that is, it satisfies the reflexive law ' $a \equiv a$ ', the symmetric law ' $a \equiv b$ implies $b \equiv a$ ', and the transitive law ' $a \equiv b$ and $b \equiv c$ implies $a \equiv c^{\prime}$.

All these properties are easy to prove, because any relation ' \equiv ' that satisfies ' $a \equiv b \Longleftrightarrow f(a)=f(b)$ ' for some function f, is an equivalence relation. In our case, $f(x)=x(\bmod m)$.

The equivalence relation " $\equiv \bmod m$ " splits \mathbb{Z} into m mutually disjoint sets called residue classes mod m or remainder classes mod m :

$$
\mathbb{Z}_{m}=\{0,1,2, \ldots, m-1\}
$$

On \mathbb{Z}_{m}, define addition modulo m and multiplication modulo m as follows :

$$
x \oplus y=\left\{\begin{array}{lll}
x+y & \text { when } & 0 \leq x+y<m \\
x+y-m & \text { when } & x+y \geq m
\end{array}\right.
$$

and

$$
x \otimes x=x y(\bmod m)
$$

Moreover, we can add and subtract congruence elements without losing congruence
$a \equiv b$ and $c \equiv d$ implies $a+c \equiv b+d(\bmod m)$
$a \equiv b$ and $c \equiv d$ implies $a-c \equiv b-d(\bmod m)$.

Number Theory (Part - 2)

Incidentally, it is not necessary to write ' $(\bmod m)$ ' once for every appearance of ' \equiv '; if the modulus is constant, we need to name it only once in order to establish the context. This is one of the great conveniences of congruence relation.

When we deal with integers, multiplication works well:

Exercise

Prove that $a \equiv b$ and $c \equiv d$ implies $a c \equiv b d(\bmod m)$.

Repeated application of this multiplication property allows us to take powers: $a \equiv b$ implies $a^{n} \equiv b^{n}(\bmod m)$, integers a, b, integer $n \geq 0$.

For example, since $2 \equiv-1(\bmod 3)$, so $2^{n} \equiv(-1)^{n}(\bmod 3)$. This means that $2^{n}-1$ is a multiple of 3 iff n is even.

Cancellation property

Combining all these, we have the following :
If $a \equiv b(\bmod m)$ and $f(x)$ is any polynomial with integer coefficients, then $f(a) \equiv f(b)(\bmod m)$.

Thus, most of the algebraic operations that we customarily do with equations can also be done with congruences. But the operation of division sometimes fails.

If $a d \equiv b d(\bmod m)$, we cannot always conclude that $a \equiv b$.
For example, $3.2 \equiv 5.2(\bmod 4)$, but $3 \neq 5$.
When $\operatorname{gcd}(d, m)=1$, the cancellation property holds good: If a, b, d, m are integers and $\operatorname{gcd}(d, m)=1$, then

$$
a d \equiv b d(\bmod m) \Longleftrightarrow a \equiv b(\bmod m)
$$

Number
Theory

Proof. Since $\operatorname{gcd}(d, m)=1$, there are integers d^{\prime} and m^{\prime} such that

$$
\begin{equation*}
d^{\prime} d+m^{\prime} m=1 \tag{2}
\end{equation*}
$$

Suppose ad $\equiv b d$. Multiplying both sides of the congruences by d^{\prime}, we get

$$
\begin{equation*}
a d^{\prime} d \equiv b d^{\prime} d \tag{3}
\end{equation*}
$$

Since $d^{\prime} d \equiv 1$ (from the relation (2)), we have $a d^{\prime} d \equiv a$ and $b d^{\prime} d \equiv b$, hence $a \equiv b$ (from the relation (3)).

The number d^{\prime} acts almost like $1 / d$ when congruences are considered (mod m).

Therefore we call it the "inverse of d modulo m ".

Invertible element

Number
Theory (Part - 2)

Let d be a positive integer.
$\ln \mathbb{Z}_{m}$, if there exists an integer x^{\prime} satisfying

$$
x \otimes x^{\prime} \equiv 1(\bmod m)
$$

we call x^{\prime} is an invertible element (a multiplicative inverse of $x \bmod m$) and is denoted by x^{-1}.

We can determine all invertible elements in \mathbb{Z}_{m} with respect to $\otimes \bmod m$ as follows :

Theorem

Let $x \neq 0$ in \mathbb{Z}_{m}. Then x^{-1} exists iff $\operatorname{gcd}(x, m)=1$.

Proof. Suppose $\operatorname{gcd}(x, m)=d>1$.
Then there are integers x^{\prime} and m^{\prime}, greater than 1 , such that $x=x^{\prime} d$ and $m=m^{\prime} d$.

Then $x m^{\prime}=\left(x^{\prime} d\right) m^{\prime}=x^{\prime}\left(m^{\prime} d\right)=x^{\prime} m$ which is congruent to $0(\bmod m)$.

Since $x m^{\prime} \equiv 0(\bmod m)$, for any integer $m^{\prime}>1, x$ cannot be invertible.

Conversely, suppose $\operatorname{gcd}(x, m)=1$.
By Euclid's algorithm, find integers x^{\prime} and m^{\prime} such that

$$
x^{\prime} x+m^{\prime} m=1
$$

Since $x^{\prime} x \equiv 1(\bmod m)$, the inverse of x, x^{-1} is nothing but $x^{\prime} \bmod m$.

This completes the proof.

Number
Theory (Part - 2)

Let m and n be integers greater than 1 . Among all divisors of m and n, only the $\operatorname{gcd}(m, n)=d$ has the property that

$$
d=m^{\prime} m+n^{\prime} n
$$

for some integers m^{\prime} and n^{\prime}. That is, d is an integer linear combination of m and n.

Euclid's algorithm is the most well-known and effective method of finding m and n.

Example

We calculate $\operatorname{gcd}(1072,147)$ as follows:

$$
\begin{aligned}
\operatorname{gcd}(1072,147) & =\operatorname{gcd}(147,43)=\operatorname{gcd}(43,18) \\
& =\operatorname{gcd}(18,7)=\operatorname{gcd}(7,4) \\
& =\operatorname{gcd}(4,3)=\operatorname{gcd}(3,1)=1
\end{aligned}
$$

Method to find m^{\prime} and n^{\prime} so that $m^{\prime} m+n^{\prime} n=1$.

Number
Theory (Part - 2)
P. Sam

We have the following :

$$
\begin{aligned}
1072 & =(147 \times 7)+43 \\
147 & =(43 \times 3)+18 \\
43 & =(18 \times 2)+7 \\
18 & =(7 \times 2)+4 \\
7 & =(4 \times 1)+3 \\
4 & =(3 \times 1)+1 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
1 & =(4)(1)+(3)(-1)=(4)(1)+(7-4 \times 1)(-1) \\
& =(7)(-1)+(4)(2)=(7)(-1)+(18-7 \times 2)(2) \\
& =(18)(2)+(7)(-5)=(18)(2)+(43-18 \times 2)(-5) \\
& =(43)(-5)+(18)(12)=(43)(-5)+(147-43 \times 3)(12) \\
& =(147)(12)+(43)(-41)=(147)(12)+(1072-147 \times 7)(-41) \\
& =(1072)(-41)+(147)(299) .
\end{aligned}
$$

Thus $m^{\prime}=299$ and $n^{\prime}=-41$.

Solution of the congruence relation

$a x \equiv 1(\bmod m)$

Number
Theory

The construction of finding "inverse" is helpful in solving a simple congruence relation : $a x \equiv 1(\bmod m)$.

Here x is nothing but $a^{-1}(\bmod m)$. How to find $a^{-1}(\bmod m)$?

- Find integers x^{\prime} and m^{\prime} such that $x^{\prime} x+m^{\prime} m=1$.
$x^{\prime}(\bmod m)$ is the required x^{-1}.

Example

Solve $7 x \equiv 1(\bmod 25)$.

We have $x^{\prime}=-7$ and $m^{\prime}=2$, so that

$$
(-7 \times 7)+(2 \times 25)=\operatorname{gcd}(25,7)
$$

Apply $\bmod 25$ both sides $-7 \times 7(\bmod 25) \equiv 1$ implies that $7^{-1}=-7(\bmod 25)=18(\bmod 25)$. Therefore $x=18$.

Euler's totient function

Number
Theory (Part - 2)

By the previous theorem, for a fixed integer $m>1$, the number of invertible elements in \mathbb{Z}_{m} is same as number of integers (between 1 and m) which are relatively prime to m.

The number is called Euler's totient function of m (because Euler was the first person to study it) and is denoted by $\phi(m)$ (read as "phi of m ".)

By convention, we have $\phi(1)=1$. Moreover, $\phi(p)=p-1$, for any prime $p, \phi(m)<m-1$, for any composite number m.

n	1	2	3	4	5	6	7	8	9	10	11	12	13
$\phi(n)$	1	1	2	2	4	2	6	4	6	4	10	4	12

Number
Theory (Part - 2)

Theorem

If p is prime, prove that for $\alpha \geq 1$,

$$
\phi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1} .
$$

Proof. We have

$$
\operatorname{gcd}\left(n, p^{\alpha}\right)=1 \Longleftrightarrow p \text { does not divide } n
$$

The multiples of p in $\left\{0,1,2, \ldots, p^{\alpha}-1\right\}$ are $\left\{0, p, 2 p, \ldots, p^{\alpha}-p\right\}$.

Hence there are $p^{\alpha}-1$ of them and $\phi\left(p^{\alpha}\right)$ counts what is left:

$$
\phi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1} .
$$

Notice that this formula properly gives $\phi(p)=p-1$ when p is a prime number and $\alpha=1$.

Multiplicative function

Number
Theory
(Part - 2)
P. Sam

Theorem

Prove that ϕ is a multiplicative function. That is, if $m, n>1$ and $\operatorname{gcd}(m, n)=1$, then

$$
\phi(m n)=\phi(m) \phi(n)
$$

Moreover, if $n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$ then

$$
\phi(n)=\prod_{i=1}^{k}\left(p_{i}^{\alpha_{i}}-p_{i}^{\alpha_{i}-1}\right)=n \prod_{p_{i} \backslash n}\left(1-\frac{1}{p_{i}}\right)
$$

Proof. If $m>1$ is not a prime power, we can write $n=m_{1} m_{2}$ where $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$.

Number Theory

Then the numbers $0 \leq n<m$ can be represented in a residue number system as $\left(n \bmod m_{1}, n \bmod m_{2}\right)$. We have

$$
\operatorname{gcd}(n, m)=1 \Longleftrightarrow \operatorname{gcd}\left(n \bmod m_{1}, m_{1}\right)=1 \text { and } \operatorname{gcd}\left(n \bmod m_{2}, m_{2}\right)=1
$$

Hence, $n \bmod m$ is "good" iff $n \bmod m_{1}$ and $n \bmod m_{2}$ are both "good," if we consider relative primality to be virtue.

The total number of good values modulo m can now be computed recursively:

It is $\phi\left(m_{1}\right) \phi\left(m_{2}\right)$, because there are $\phi\left(m_{1}\right)$ good ways to choose the first component $n \bmod m_{1}$ and $\phi\left(m_{1}\right)$ good ways to choose the second component $n \bmod m_{2}$ in the residue representation.

Examples

Number
Theory (Part - 2)
hence $x=20$.

1. $\phi(100)=\phi\left(2^{2}\right) \phi\left(5^{2}\right)=\left(2^{2}-2\right)\left(5^{2}-5\right)=40$.
2. $\phi(100)=100\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)=40$.
3. We can find x such that $\phi(x)=12$ as follows:

$$
\begin{aligned}
12 & =4 \times 3 \\
& =\left(5^{1}-5^{0}\right)\left(4^{1}-4^{0}\right) \\
& =\phi(5 \times 4)=\phi(20)
\end{aligned}
$$

Number
Theory (Part - 2)

Another way to apply division to congruences is to divide the modulus as well as the other numbers:

$$
a d \equiv b d(\bmod m d) \Longleftrightarrow a \equiv b(\bmod m)
$$

for $d \neq 0$.
This law holds for all real a, b, d, and m, because it depends only on the distributive law $(\operatorname{amod} m) d \equiv \operatorname{ad}(\bmod m d)$: We have

$$
\begin{aligned}
a(\bmod m)=b(\bmod m) & \Longleftrightarrow \quad(a \bmod m) d=(b \bmod m) d \\
& \Longleftrightarrow a d(\bmod m d)=b d(\bmod m d) .
\end{aligned}
$$

Moreover, we get a general law that changes the modulus as little as possible: For integers a, b, d, m,

$$
a d \equiv b d(\bmod m) \Longleftrightarrow a \equiv b\left(\bmod \frac{m}{\operatorname{gcd}(d, m)}\right)
$$

Proof. Find integers d^{\prime} and m^{\prime} such that

$$
d^{\prime} d=m^{\prime} m=\operatorname{gcd}(d, m)
$$

Multiplying ad $\equiv b d$ by d^{\prime} gives the congruence

$$
\operatorname{a.gcd}(d, m) \equiv b \cdot g c d(d, m)(\bmod m)
$$

which can be divided by $\operatorname{gcd}(d, m)$.

The idea of changing the modulus

Number
Theory

If we know that $a \equiv b(\bmod m)$, then $a \equiv b(\bmod d)$, where d is any divisor of m because any multiple of m is a multiple of d.

Moreover, if $a \equiv b$ with respect to two small moduli, say m and n, we can conclude that

$$
a \equiv b
$$

with respect to the $\operatorname{Icm}(m, n)$ (a larger one) :
$a \equiv b(\bmod m)$ and $a \equiv b(\bmod n) \Longleftrightarrow a \equiv b(\bmod \operatorname{Icm}(m, n))$
integers $m, n>0$ because if $a-b$ is a common multiple of m and n, it is a multiple of $\operatorname{Icm}(m, n)$.

For example, if $a \equiv b$ modulo 12 and 18 , then $a \equiv b(\bmod 36)$.
Since $\operatorname{Icm}(m, n)=m n$ when m and n are relatively prime, we have the following :

$$
\begin{equation*}
a \equiv b(\bmod m n) \Longleftrightarrow a \equiv b(\bmod m) \text { and } a \equiv b(\bmod n) \tag{4}
\end{equation*}
$$

if $\operatorname{gcd}(m, n)=1$.
The moduli m and n in (4) can be further decomposed into relatively prime factors until every distinct prime has been isolated. Therefore

$$
\begin{equation*}
a \equiv b(\bmod m) \Longleftrightarrow a \equiv b\left(\bmod p^{m_{p}}\right) \tag{5}
\end{equation*}
$$

if $\prod_{p} p^{m_{p}}$ is the prime factorization of m. Thus congruence modulo "powers of primes" are the building blocks for all congruences modulo "integers".

Solving congruence relations

Number
Theory (Part - 2)
P. Sam Johnson

Consider a linear congruence

$$
\begin{equation*}
a x \equiv b(\bmod m) \tag{6}
\end{equation*}
$$

■ Does (6) have a solution?

- If there is one solution, can we find all possible solutions of (6)?

If (6) has a soluion, then $\frac{a x-b}{m}$ is an integer, say y.
Hence $a x-m y=b$. The problem of finding " x " has become a problem of finding " x " and " y " satisfying $a x-m y=b$.

It is observed that if (6) has a solution, then $d=\operatorname{gcd}(a, m)$ must divide b, because $d=\operatorname{gcd}(a, m)$ divides $a x-m y$.

Let d divide b. Then $a=a_{1} d, m=m_{1} d, b=b_{1} d$, and $\operatorname{gcd}\left(a_{1}, m_{1}\right)=1$. Now

$$
\begin{aligned}
a x-m y & =b \\
a_{1} d x-m_{1} d y & =b_{1} d \\
a_{1} x-m_{1} y & =b_{1} \\
a_{1} x & \equiv b_{1}\left(\bmod m_{1}\right) \quad \text { since } \operatorname{gcd}\left(a_{1}, m_{1}\right)=1
\end{aligned}
$$

By Euclid's algorithm, there are integers α and β such that

$$
\begin{aligned}
a_{1} \alpha+m_{1} \beta & =1 \\
a_{1}\left(b_{1} \alpha\right)+m_{1}\left(b_{1} \beta\right) & =b_{1} .
\end{aligned}
$$

Therefore $x=b_{1} \alpha$ and $y=-b_{1} \beta$. Reduce mod m if necessary, we have a solution for (6). Hence existence of solution of (6) is answered.

Number
Theory (Part - 2)

Theorem

Let x_{0} be any solution. Then any possible solution of

$$
a x \equiv b(\bmod m)
$$

is given by

$$
x=x_{0}+\left(\frac{m}{d}\right) t
$$

$t=0,1, \ldots, d-1$. These are the only solutions ; the number of such solutions is d.

Proof. Let x and x^{\prime} be any two arbitrary solutions :

$$
a x \equiv b(\bmod m) \quad \text { and } \quad a x^{\prime} \equiv b(\bmod m)
$$

Then $a\left(x-x^{\prime}\right) \equiv 0(\bmod m)$, hence $\frac{a\left(x-x^{\prime}\right)}{m}$ is an integer.

Number
Theory (Part - 2)

Let $d=\operatorname{gcd}(a, m)$. Then $a=a_{1} d$ and $m=m_{1} d$ for some integers n_{1}, m_{1}, so $\frac{a_{1}\left(x-x^{\prime}\right)}{m_{1}}$ is an integer.
Hence $a_{1}\left(x-x^{\prime}\right) \equiv 0\left(\bmod n_{1}\right)$. Since $\operatorname{gcd}\left(a_{1}, n_{1}\right)=1$, we can cancel a_{1} both sides.

Therefore $x-x^{\prime} \equiv 0\left(\bmod n_{1}\right)$ which implies that $x-x^{\prime} \equiv 0\left(\bmod \frac{n}{d}\right)$.

Thus $x-x^{\prime}=n_{1} t=\left(\frac{n}{d}\right) t, \quad t=0,1, \ldots, d-1$.

Example

Solve $51 x \equiv 34(\bmod 68)$.

Let $a=51, b=34, m=68$. Then $d=\operatorname{gcd}(a, m)=17$. Therefore solution exists since " 17 divides 34 ".

Number
Theory (Part - 2)

Divide by 17 throughout, we get

$$
3 x \equiv 2(\bmod 4)
$$

By inspection, $x=2$ is a solution. Therefore $x_{0}=2$.
All other solutions are given by

$$
x=x_{0}+\frac{68}{17} t, t=0,1, \ldots, 16
$$

Hence $x=2+4 t, \quad t=0,1, \ldots, 16$.
Therefore 17 distinct solutions $\{2,6, \ldots, 66\}$ exist.

Example

Solve $51 x \equiv 33(\bmod 66)$.

Let $a=51, b=33, m=66$. Then
$d=\operatorname{gcd}(a, m)=\operatorname{gcd}(51,66)=3$.

Number
Theory (Part - 2)

Therefore solution exists since " 3 divides 33 ".
Divide by 3 throughout, we get

$$
17 x \equiv 11(\bmod 22)
$$

so $x=-17^{-1} \times 11(\bmod 22)$. Using Euclid's algorithm, we get $17^{-1} \equiv-9 \equiv 13$. Hence $x \equiv 11(\bmod 22)$, so $x_{0}=11$.

All solutions are $x=x_{0}+\left(\frac{n}{d}\right) t=11+22 t, \quad t=0,1,2$.
Therefore 11,33 and 55 are the only solutions.

Exercises

Solve the following congruence relations.

1. $117 x \equiv 45(\bmod 207)$
2. $103 x \equiv 79(\bmod 199)$.

Chinese remainder theorem (discovered by Sun Tsu in China, about A.D. 350.)

Number
Theory (Part - 2)
P. Sam Johnson

We now consider systems of linear congruences.

Theorem

Let $m_{1}, m_{2}, \ldots, m_{k}$ be given positive integers such that they are all mutually pairwise coprime. Then the following system of congruence has a unique solution modulo M with $M=m_{1} m_{2} \cdots m_{k}$:

$$
\begin{array}{rlc}
x & \equiv & r_{1}\left(\bmod m_{1}\right) \\
x & \equiv & r_{2}\left(\bmod m_{2}\right) \\
\vdots & \vdots & \vdots \\
x & \equiv & r_{k}\left(\bmod m_{k}\right)
\end{array}
$$

Number
Theory
Proof. Existence. Let $M_{i}=\frac{m_{1} m_{2} \cdots m_{k}}{m_{i}}=\frac{M}{m_{i}}, 1 \leq i \leq k$. Then $\operatorname{gcd}\left(M_{i}, m_{i}\right)=1$. Hence, for each i, there exists y_{i} such that $M_{i} y_{i} \equiv 1\left(\bmod m_{i}\right)$. Let $x=\sum_{i=1}^{k} M_{i} y_{i} r_{i}$. Then
$x=\sum_{i=1}^{k} M_{i} y_{i} r_{i} \equiv r_{i}\left(\bmod m_{i}\right)$, for all $1 \leq i \leq k$. Thus x is the desired solution.

Uniqueness: Let x and x^{\prime} be two solutions. Then $x \equiv r_{i}\left(\bmod m_{i}\right)$ and $x^{\prime} \equiv r_{i}\left(\bmod m_{i}\right)$ for all $i=1,2, \ldots, k$. So $x-x^{\prime} \equiv 0\left(\bmod m_{i}\right)$ for all $i=1,2, \ldots, k$, hence $x-x^{\prime}$ is divisible by each $m_{i}, 1 \leq i \leq k$.

Since $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$, for $i \neq j, x-x^{\prime}$ must be divisible by their product $M=m_{1} m_{2} \cdots m_{k}$. Hence $x-x^{\prime} \equiv 0(\bmod M)$. Thus, in any interval of length M, there exists exactly one solution of the system.

Number
Theory (Part - 2)
P. Sam

Let $m_{1}=4, m_{2}=5, m_{3}=9$. Then $M=m_{1} m_{2} m_{3}=180, M_{1}=45, M_{2}=36, M_{3}=20$. Solving the congruent relations $M_{i} y_{i} \equiv 1\left(\bmod m_{i}\right), i=1,2,3$, give $y_{1}=1, y_{2}=1, y_{3}=5$.

Therefore $x=\sum M_{i} y_{i} r_{i}=907(\bmod 180)=7(\bmod 180)$. Thus $x=7+180 t$, for some integer t.

Number
Theory (Part - 2)

Exercise

The following problem was posed by Sun Tsu Suan-Ching (4th century $A D$):
There are certain things whose number is unknown. Repeatedly divided by 3 , the remainder is 2 ; by 5 the remainder is 3 ; and by 7 the remainder is 2 . What will be the number?

Exercise

Find out the smallest number which leaves remainder of 1 when divided by $2,3,4,5,6$ but divided by 7 completely.

Number Theory (Part - 2)

Exercise

Another puzzle with a dramatic element from Brahma-Sphuta-Siddhanta (Brahma's Correct System) by Brahmagupta (born 598 AD):

An old woman goes to market and a horse steps on her basket and crashes the eggs. The rider offers to pay for the damages and asks her how many eggs she had brought. She does not remember the exact number, but when she had taken them out two at a time, there was one egg left. The same happened when she picked them out three, four, five, and six at a time, but when she took them seven at a time they came out even. What is the smallest number of eggs she could have had?

Number Theory (Part - 2)

Exercise

A band of 17 pirates stole a sack of gold coins. When they tried to divide the fortune into equal portions, 3 coins remained. In the ensuing brawl over who should get the extra coins, one pirate was killed. The wealth was redistributed but this time an equal division left 10 coins. Again an argument developed in which another pirate was killed. But now the total fortune was evenly distributed among the survivors. What was the least number of coins that could have been stolen?
Hint: We have the following congruence relations:

$$
\begin{aligned}
& x \equiv 5(\bmod 17) \\
& x \equiv 7(\bmod 16) \\
& x \equiv 0(\bmod 15)
\end{aligned}
$$

Now solve this system.

Some applications

Proposition

Any positive integer n is divisible by 3 iff the sum of digits of n (base 10) is also divisible by 3.

Proof. Let $n=\sum_{i=0}^{\ell} d_{i} 10^{i}$, where $d_{i} \in\{0,1, \ldots, 9\}$.
$10 \equiv 1(\bmod 3)$
$10^{i} \equiv 1(\bmod 3) d_{i} 10^{i} \equiv d_{i}(\bmod 3)$.
Hence $n=\sum_{i=0}^{\ell} d_{i} 10^{i} \equiv \sum_{i=n}^{\ell} d_{i}(\bmod 3)$.

Number
Theory (Part - 2)

Proposition

Any positive integer n is divisible by 11 iff the following is true: The sum of digits in even position is congruent to the sum of the digits in odd position (mod 11).

Proof. Let $n=\sum_{i=0}^{\ell} d_{i} 10^{i}$, where

$$
\sum_{i=0}^{\ell} d_{2 k}=\sum_{i=0}^{\ell} d_{2 k+1}(\bmod 11)
$$

$$
\begin{aligned}
10 \equiv-1(\bmod 11) 10^{i} & \equiv(-1)^{i}(\bmod 11) \\
\sum_{i=0}^{\ell} d_{i} 10^{i} & \equiv \sum_{i=0}^{\infty} d_{i}(-1)^{i}(\bmod 11)
\end{aligned}
$$

Hence 11 divides n iff $d_{0}+d_{2}+\cdots \equiv d_{2}+d_{4}+\cdots(\bmod 11)$.

Prime number sieve : a fast type of algorithm for

finding primes

Number
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves.

A prime sieve works by creating a list of all integers up to a desired limit and progressively removing composite numbers (which it directly generates) until only primes are left.

This is the most efficient way to obtain a large range of primes; however, to find individual primes, direct primality tests are more efficient.

Furthermore, based on the sieve formalisms, some integer sequences are constructed which they also could be used for generating primes in certain intervals.

Sieve of Eratosthenes

Number
Theory (Part - 2)

The sieve of Eratosthenes (250s BCE), one of a number of prime number sieves, is a simple, ancient algorithm for finding all prime numbers up to any given limit. It is named after Eratosthenes of Cyrene, a Greek mathematician.

It does so by iteratively marking as composite (i.e., not prime) the multiples of each prime, starting with the multiples of 2 .

Eratosthenes of Cyrene

Algorithm : Sieve of Eratosthenes

Number

Following is the algorithm to find all the prime numbers less than or equal to a given integer n by Eratosthenes' method:

- Create a list of integers from 2 to $n:\{2,3,4, \ldots, n\}$. Initially, let p equal 2, the first prime number.
- Starting from p, count up in increments of p and mark each of these numbers greater than p itself in the list. These numbers will be $2 p, 3 p, 4 p$, etc.; note that some of them may have already been marked.
- Find the first number greater than p in the list that is not marked. If there was no such number, stop. Otherwise, let p now equal this number (which is the next prime), and repeat from step 3.

When the algorithm terminates, all the numbers in the list that are not marked are prime.

Number
Theory (Part - 2)
P. Sam Johnson

The sieve of Sundaram is a simple deterministic algorithm for finding all prime numbers up to a specified integer. It was discovered by Indian mathematician S.P. Sundaram in 1934.

Theorem

Let $n>1$ be fixed. Then either n is prrime, or there is a prime p such that $p \backslash n$ and $p \leq \sqrt{n}$.

Proof. Let n be composite, say $n=\ell m$ with $1<\ell, m<n$.
If both $\ell>\sqrt{n}$ and $m>\sqrt{n}$, then

$$
n=\ell m>\sqrt{n} \cdot \sqrt{n}=n .
$$

That is, $n>n$, an absurd.

Fermat's Little Theorem

Number
Theory (Part - 2)

Remark. If we can somehow know that n does not have any divisor (>1) below \sqrt{n}, then surely n is prime. This is the sieve method of tabulating the primes, in use, for long, long time.

Theorem

Given a prime $p>1$ and any integer $a>1$, we always have

$$
a^{p} \equiv a(\bmod p)
$$

If $\operatorname{gcd}(a, p)=1$, then $a^{p-1} \equiv 1(\bmod p)$.

Proof. Suppose that $\operatorname{gcd}(a, p)=1$.
Consider the first $(p-1)$ multiples of a :

$$
1 a, 2 a, 3 a, \ldots,(p-1) a .
$$

Claim : These are all distinct $\bmod p$.
If $k, k^{\prime} \in\{1,2, \ldots, p-1\}$ and $k a \equiv k a^{\prime}(\bmod p), a$ and p are coprime, cancel it, we get $k \equiv k^{\prime}(\bmod p)$. This forces $k=k^{\prime}$.

So these numbers when reduced $\bmod p$ simply give $1,2, \ldots, p-1$ in a (possibly) difference order.

Hence

$$
\begin{aligned}
1 \cdot 2.3 \ldots(p-1) & \equiv 1 \cdot a \cdot 2 \cdot a \ldots(p-1) a(\bmod p) \\
a^{(p-1)!} & \equiv(p-1)!(\bmod p)
\end{aligned}
$$

We can cancel $(p-1)!$, hence $a^{p-1} \equiv 1(\bmod p)$.

Euler's theorem

Number
Theory

The following result is a generalization of above result, which is useful at present, essence of RSA, crypto-systems.

Theorem (Euler's theorem)

Let a and n be such that, both are greater than 1, and $\operatorname{gcd}(a, n)=1$. Then

$$
a^{\phi(n)} \equiv 1(\bmod n) .
$$

Proof. Let $t=\phi(n)$ and denote by $r_{1}, r_{2}, \ldots, r_{t}$ those integers between 1 and n which are coprime with n.

That is, $1 \leq r_{i}<n$, for all i and $\operatorname{gcd}\left(r_{i}, n\right)=1$. We consider the following t multiples of $a: r_{1} \cdot a, r_{2}, a, \ldots, r_{t} . a$.

Claim: Any two of these are distinct $(\bmod n)$.

Number
Theory (Part - 2)

If $r_{i} a \equiv r_{j} a(\bmod n)$, simply cancel a since $\operatorname{gcd}(a, n)=1$. Therefore $r_{i} \equiv r_{j}(\bmod n)$.

This forces $r_{i}=r_{j}$.
Hence, when reduced $\bmod n$, they are all distinct and so, just the numbers $r_{1}, r_{2}, \ldots, r_{t}$ in some other order.

Thus $r_{1} a, r_{2} a, \ldots, r_{t} a \equiv r_{1} r_{2} \ldots r_{t}(\bmod n)$.
But all the r_{i} 's are coprime with n, so must be their product. Hence cancel it and get $a^{t} \equiv 1(\bmod n)$ or $a^{\phi(n)} \equiv 1(\bmod n)$.

Corollary

Fermat's theorem follows by letting $n=p$, a prime.

Application of Fermat's theorem

Number
Theory (Part - 2)
P. Sam Johnson

Alternate way of finding $a^{-1}(\bmod n)$ if $\operatorname{gcd}(a, n)=1$ is known.
By Fermat's theorem, we have

$$
a^{\phi(n)} \equiv 1(\bmod n),
$$

so $a^{\phi(n)-1} \equiv a^{-1}(\bmod n)$, since $\operatorname{gcd}(a, n)=1$.

Example : Find $20^{99}(\bmod 101)$.

Number
Theory (Part - 2)

Since 101 is prime and $\operatorname{gcd}(101,20)=1$, by Euler's theorem,

$$
20^{100} \equiv 1(\bmod 101)
$$

Hence

$$
20^{99} \equiv 20^{-1}(\bmod 101)
$$

The problem is reduced to solving the following congruent relation

$$
20 x \equiv 1(\bmod 101)
$$

We have discussed earlier a method to solve the above congruent relation. Verifty that $x=96$ is a solution. Thus

$$
20^{99}(\bmod 101)=96
$$

Finding last digit of 27^{982}.

Number
Theory
(Part - 2)
P. Sam

Since

$$
27 \equiv 7(\bmod 10)
$$

and

$$
\operatorname{gcd}(10,7)=1
$$

$7^{\phi(10)} \equiv 1(\bmod 10)$, so

$$
7^{4} \equiv 1(\bmod 10)
$$

Since

$$
\begin{gathered}
27^{982} \equiv 7^{982}(\bmod 10) \\
7^{982}=\left(7^{4}\right)^{245} \times 7^{2}=1 \times 7^{2}=49 \equiv 9(\bmod 10)
\end{gathered}
$$

Exercise

Find last 2 digits of 29^{2005}.

Finding x from $39^{2005}=x(\bmod 100)$.

Number
Theory (Part - 2)
P. Sam

Since

$$
39^{\phi(100)} \equiv 1(\bmod 100)
$$

and

$$
\phi(100)=\phi\left(5^{2} \cdot 2^{2}\right)=40,
$$

$39^{40} \equiv 1(\bmod 100)$, by Euler's theorem.
Since $39^{2005}=39^{2000} .39^{5}=\left(39^{40}\right)^{50} .39^{5}$,

$$
39^{2005}=39^{5} \equiv 99(\bmod 100)
$$

Thus

$$
x=99 .
$$

Wilson's theorem

Number
Theory (Part - 2)

Theorem

If p is prime, then $(p-1)!\equiv-1(\bmod p)$.

Proof. Since p is prime, $x^{2} \equiv 1(\bmod p)$.
Then $(x-1)(x+1) \equiv 0(\bmod p)$.
Since $p \backslash(x-1)$ or $p \backslash(x+1)$, we get $x \equiv 1(\bmod p)$ or $x \equiv-1(\bmod p)$.

Therefore, in the set $\{1,2, \ldots, p-1\}$, the only solutions are $x=1$ and $x=p-1$.

Again, stare at the numbers $1,2, \ldots, p-1$. If $p=2$, then it is trivial. So let p be odd.

Here, except 1 and $p-1$, pair off each x with its unique inverse $x^{-1}(\bmod p)$.

Converse to Wilson is also true.

Number
Theory (Part - 2)
P. Sam

$$
\begin{equation*}
(n-1)!\equiv-1(\bmod n) \tag{7}
\end{equation*}
$$

Suppose n is composite, say $1<d<n$ and $d \backslash n$. Then

$$
\begin{equation*}
d \backslash(n-1)! \tag{8}
\end{equation*}
$$

Number
Theory (Part - 2)
P. Sam Johnson

Since $d \backslash n$ and $n \backslash\{(n-1)!+1\}$,

$$
d \backslash\{(n-1)!+1\} .
$$

From (7) and (8), $d \backslash 1$, which gives $d=1$, a contradiction. Thus n is prime.

Special Numbers: Mersenne numbers

Number Theory (Part - 2)

The numbers of the form $2^{n}-1$ are called Mersenne numbers, denoted by M_{n}. If $M_{p}=2^{p}-1$ is prime, it is called Mersenne prime.

Theorem

If n is composite, then M_{n} is composite.

Proof. Let $n=m k$, where $1<k, m<n$. Then $2^{n}-1=2^{m k}-1=\left(2^{k}\right)^{m}-1=\left(2^{k}-1\right)\left(1+2^{k}+\cdots+2^{(n-1) k}\right)$, a non-trivial factorization.

Convers is not necessarily true. For example, $M_{11}=2^{11}-1=2047=23 \times 87$ is composite whereas 11 is prime.

Conjecture. There exists infinitely many Mersenne primes. The fact that only 43 Mersenne primes are known till date.

Special Numbers : Fermat numbers

Number
Theory (Part - 2)

Fermat numbers are defined by $f_{n}=2^{n}+1$.
If f_{n} is prime, then n must be a power of 2 , that is, $n=2^{k}$ for some k. Converse need not be true.

Example given by Euler
When $n=2^{5}, f_{n}$ is not prime.
Primes of type $2^{2^{k}}+1=F_{k}$ are called Fermat primes.
Fact: Only $F_{0}, F_{1}, F_{2}, F_{3}$ and F_{4} are known to be primes ; $F_{5}, F_{6}, \ldots, F_{14}$ are known to be composite.

Conjecture: There exists only finitely many Fermat primes.

Special Numbers : Carmichael numbers

Number
Theory (Part - 2)

If n satisfies with an integer $a, \operatorname{gcd}(a, n)=1$ and $a^{n-1} \equiv 1(\bmod n)$, then n may or may not be prime.

Proposition

If $\operatorname{gcd}(a, n)=1$ but $a^{n-1} \equiv 1(\bmod n)$, then n is a prime.

If n satisfies $a^{n-1} \equiv 1(\bmod n)$ for all $a \in\{2,3, \ldots, n-1\}$ and $\operatorname{gcd}(a, n)=1$, then n is called Carmichael number.

The smallest Carmichael number is 561 .

Theorem (1998)

There exists infinitely many such Carmichael numbers.

Special Numbers : Euclid numbers

Euclid's proof suggests that we define Euclid numbers by the recurrence

$$
e_{n}=e_{1} e_{2} \cdots e_{n-1}+1
$$

when $n \geq 1$.
All e_{n} 's are not prime numbers.
For example, $e_{1}, e_{2}, e_{3}, e_{4}, e_{6}$ are primes, whereas $e_{5}, e_{7}, e_{8}, e_{9}, \ldots, e_{17}$ are composite.

References

Number
Theory

1. Graham, Knuth and Patashnik, "Concrete Mathematics

- A Foundation for Computer Science", Pearson

Education.
2. Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger, " $A=B^{\prime \prime}$, AK Peters Ltd., Wellesley, Massachusetts.
3. Herbert S. Wilf, "Generatingfunctionology", Third Edition, AK Peters Ltd., Wellesley, Massachusetts.

